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Undular disturbances of urbitrarily small steepness to the boundary of a circular 
patch of uniform vorticity are found to give way to a qualitatively different type of 
behaviour after a time inversely proportional to the initial wave steepness squared. 
Repeatedly, thin filaments are drawn out at a frequency of nearly half the vorticity 
jump across the interface (the intrinsic frequency of linear waves on the interface), 
and the interaction hetween the filaments and the undulating boundary generate 
new disturbances from which still greater numbers of filaments of increasingly 
complicated shape are drawn out. The vortex boundary thereby experiences an 
extraordinary, continual and apparently irreversible growth in complexity. 

Essentially the same phenomenon occurs on all vortex-patch equilibria, e.g. the 
Kirchhoff elliptical vortex, with even greater complexity. The steepening of a 
disturbance on a non-circular vortex proceeds faster than that on a circular vortex, 
because of the varying mean strain and shear seen by the disturbance as it travels 
around the vortex boundary. 

Generalizations to more than one vorticity interface, to flows on the surface of a 
sphere, and to sharp but not infinitely sharp vorticity gradients are also discussed. 
The results support the view that almost any two-dimensional, inviscid, incom- 
pressible flow with large vorticity gradients will exhibit repeated filamentation. 

1. Introduction 
In  the last century, Thomson (1880) proved linear stability for a column of 

uniform axial vorticity in an unbounded, inviscid, incompressible and otherwise 
motionless fluid, Linear stability, however, does not sufficiently constrain the 
evolution of finite-amplitude disturbances, and to this day the vortex is not known 
to be stable in this nonlinear sense. 

Several results bearing upon the fate of finite-amplitude disturbances have 
recently been brought forward by Wan & Pulvirenti (1985) and Dritschel ( 1 9 8 8 ~ ) .  
They considered the simpler two-dimensional problem, the so-called vortex-patch 
problem, and found that small but finite boundary disturbances cannot significantly 
disrupt the gross shape of the vortex. The degree of disruption is measured by a 
norm, and a (Liapunov) stability theorem is a statement on the maximum growth of 
that  norm over all time. Wan & Pulvirenti used the L' area norm (the magnitude of 
the areal displacement of the vortex boundary from its equilibrium position) to prove 
stability (but in a non-standard sense ; for their theorem see equation (1) of Dritschel 
( 1 9 8 8 ~ )  and see also $5 of that paper). Dritschel proved (Liapunov) stability in terms 
of the mean-square y-displacement of the vortex boundary (here y is equal to half of 
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the radius squared). Viewed in this norm, the disturbance neither grows nor decays, 
because the norm is constant in time. 

Although these stability results prevent small disturbances from altering the gross 
shape of the vortex by more than a correspondingly small amount, they say nothing 
about the possible changes in the detailed structure of the vortex boundary over 
time. For instance, there are no nonlinear stability theorems that bound the mean- 
quartic displacement of the vortex boundary. The results below illustrate that 
extraordinary nonlinear behaviour eventually develops from gentle undular 
disturbances, behaviour transparent to the norms used in the proofs of stability 
above. 

The initial stages of this nonlinear behaviour were calculated by Deem & Zabusky 
(1978, figure 4) using an early ‘contour dynamics’ algorithm (an algorithm 
specifically designed for piecewise-constant vorticity distributions). That calculation 
indicated that a circular vortex with a smooth initial disturbance eventually ejects 
a thin filament of vorticity having a peak curvature a t  its tip many times greater 
than the initial peak curvature along the vortex boundary. However, owing to 
insufficient resolution, and, in particular, owing to the difficulty in properly resolving 
the filament, their calculation could not be continued further. A systematic study 
was later conducted by Pullin (1981) to determine the conditions for and nature of 
filament formation on a discontinuous vorticity interface running parallel to  a rigid 
wall. He found that sufficiently steep initial disturbances lead to  the formation of a 
filament, within a time equal t o  two oscillations of the disturbance in linear theory. 
The integration times were limited by the low spatial resolution employed and, when 
a filament formed, by the inability of his numerical algorithm to continue. 
Significantly, Pullin saw the possibility that filaments might be generated repeatedly, 
with a period equal to  the linear disturbance period. 

More recently, Stern (1985) and Stern & Pratt  (1985) have re-examined filament 
formation on interfaces of discontinuous vorticity. Both studies claim to consider 
interfaces of infinite length (numerically approximated), the first in the absence of 
rigid boundaries, and the second in the presence of a rigid wall. In the latter case, the 
distance of the interface from the wall differs on either ‘end’ of the interface. On the 
basis of their numerical calculations, done a t  low resolution and for short times, Stern 
(1985) and Stern & Pratt  (1985) concluded, apparently prematurely, that there exists 
a finite steepness below which a disturbance will never lead to the formation of a 
filament. The results of the present paper, which are based on high-resolution 
numerical experiments and on a mathematical analysis of the governing equations in 
the limit of shallow disturbances, on the contrary support the view that disturbances 
of arbitrarily small steepness eventually lead to the formation of not just one 
filament, but an apparently endless succession of filaments of increasingly 
complicated shapes. 

The present paper examines the process of ‘filamentation’ from a combined 
numerical-analytical perspective. The numerics is provided by a recent enhancement 
and overhaul of the contour dynamics method called ‘contour surgery ’ (Dritschel 
1988b, c ,  and briefly reviewed in the following section). This algorithm is designed to 
automatically remove vorticity features smaller than a prescribed scale and to 
efficiently redistribute resolution to maintain accuracy. In  $3, filamentation is 
demonstrated numerically for disturbances to circular vortices, both in the planar 
and spherical (Dritschel 1 9 8 8 ~ )  cases. Section 4 presents a weakly nonlinear theory 
which is shown to agree closely with the fully nonlinear calculations of 5 3 before the 
onset of filamentation. It is this that  establishes the inevitability of filamentation 
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even for arbitrarily gentle initial undulations. Section 5 extends the results of 94 to 
non-circular vortices. First, a calculation of the filamentation of an elliptical vortex 
boundary illustrates the new features of strain and variable shear that  generally 
hasten steepening and increase the complexity of filamentation. With the support of 
Appendix B, the section continues by proving that sufficiently small disturbances to 
the contours of general piecewise-constant vorticity flows obey a fully nonlinear 
equation for the evolution of a disturbance to an infinitely straight vorticity 
interface, but with coefficients dependent on the time variation of strain and shear 
along the basic-state vorticity interface. Then, just as in $4, a weakly nonlinear 
equation is derived, whose form of evolution is now, however, dependent only on the 
shape of the initial disturbance and on an integral measure of the strain and shear 
along the basic-state, supporting interface. In  $6, sharp but finite gradients of 
vorticity are examined. Disturbances whose amplitudes are comparable to the width 
of the high-gradient region are found to show marked differences in their evolution 
compared with similar disturbances to much sharper gradients. The paper concludes 
in $7 by interpreting the phenomenon of filamentation in the larger context of 
Rossby wave breaking (McIntyre & Palmer 1983, 1984, 1985) with applications to 
the Earth’s stratosphere (Juckes & McIntyre 1987). 

2. Numerics 
The basic fluid system, assumed to be inviscid, incompressible, unforced, and free 

from all boundaries, satisfies, in the case of piecewise-constant vorticity, the 
following Lagrangian set of equations for the positions of the particles x on the 
interfaces of vorticity discontinuity, C,, k = 1, . . . , N : 

where 9, is the jump in vorticity crossing C, inwards and X, is a point on the 
boundary of C, traversed leaving the interior of C, on the left (Deem & Zabusky 1978 ; 
Zabusky, Hughes & Roberts 1979). We note in passing that (1)  is true not only for 
flow on the infinite plane, but also flow on the surface of a sphere, only x and X, are 
to be regarded as three-dimensional vectors stemming from the centre of the sphere 
and terminating a t  the surface of the sphere (Dritschel 1988~) .  

Numerical solutions to (1) are obtained using the ‘contour surgery’ technique in 
both the planar and spherical cases (Dritschel 1988b, c). Like contour dynamics, 
contour surgery replaces the continuous system (1) by an approximate finite discrete 
system. This approximation, of course, introduces errors that grow secularly in time. 
Accurate, extended integrations meant to capture detailed aspects of the develop- 
ment of disturbances on contours (e.g. filamentation) therefore require very high 
resolution. 

Contour surgery is not simply a sophisticated version of contour dynamics, and 
some form of contour surgery is necessary to allow calculations to proceed, for 
example, beyond the formation of a single filament. The algorithm automatically 
removes vorticity features smaller than a predefined cutoff scale S, in effect, forcing 
a maximum resolution. Surgery is not viscous dissipation, it is simply a way of 
controlling the rapid formation of small scales. In  practice, one chooses 6 sufficiently 
small that surgical errors are comparable with errors in spatial and temporal 
discretization (further discussion may be found in 94 of Dritschel 1988b). Spatial 
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discretization is controlled by two parameters (other than 8) .  The first, L. represents 
a typical large-scale length ( L  = 1 is taken throughout) while the second, p. enters 
through the following approximate formula for the distance between adjacent nodes 
(enforced a t  each time step) : e = p(cL)-;, K being a non-locul curvature sensitive to 
the presence of nearby regions of high curvature on the same or different contours 
(vorticity interfaces). Finally, temporal discretization uses a fourth-ordcr Runga- 
Kutta  method with a time step, in the present paper, of At = 0.05 corresponding 
to a peak vorticity magnitude of w, = 2n. The sensitivity of accuracy to variations 
in these parameters is discussed at length in Dritsvhel (1988F). 

The accuracy of the calculations presented in this paper is measured by a single 
parameter, cc (in the planar case, see equation (15) of Dritschel 1988h; in the 
spherical case, see equation (-4 5) of Dritschel 1988~) .  This parameter monitors the 
accumulation of phase error (the error in the orientation of the large-scale flow) over 
the course of the calculation. Of course, preferable measures of' accuracy are 
reproducibility and reversibility, which, however. are not demonstrated in thc  
present paper. Some such demonstrations are provided by Uritschel (19880). It is fair 
to say, though, that  numerous background calculations were performed to dctcrmine 
the resolution required for the experiments shown in this paper. some of' which. 
owing to insufficient resolution, artificially delayed filamentation or altogether 
suppressed it. 

3. Filamentation of circular vortices 
In  this section, numerical experiments are described that track the temporal 

development of initially gentle undular disturbances to circular vortices lying on the 
plane or on the surface of a sphere. The experiments illustrate both the qualitative 
and quantitative variation in the character of filamentation with the initial condition 
and the geometry. 

The numerical calculations begin with a circular vortex (which is a spherical cap 
in spherical geometry) perturbed by weakly distorting a small part of the vortex 
boundary (see figure 1) .  In the planar case, the perturbation shifts the vortex 
boundary from r = 1 to r = 1 +p(6', t = 0) where 

p(#, 0) = a e-;(~i@d2 symmetric case, 

antisymmetric case, ( 2 )  - - - a(6'/6',) e-w%l)2 

for -x < 6' 6 x. a represents the (small) amplitude and 8, = x / m ,  m integer, the 
(small) initial extent of the disturbance. 

On the unit sphere, the perturbation shifts the axial position of the circular 
boundary from z = zo, - 1 < zo < 1 ,  to z = z ,  -r,2p(B, 0) with r,2 = 1-2: and p(6, 0) as 
given in ( 2 ) .  This choice of perturbation reduces (approximately) to the planar case 
as zu + 1 when a < 1 ; since r2 + z2 = 1 on the sphere, r / r O  = ( 1  + 2p)t = 1 + p  + O(p2) as 
zo+ 1 or, equivalently, as ru-+O. 

The evolution of a disturbance is most easily visualized in a frame of reference that 
brings particles on the equilibrium vortex boundary to rest, a frame that rotates at 
the uniform rate SZ = $W where w = 2n is the jump in vorticity across the boundary. 
Only part of the vortex boundary is shown. from point A to B in figure 1, in such a 
way that point A always appears on the left-hand edge and point B on the right. 
Plotted is the disturbance p(0, t )  ( r (B, t )  - 1 in the planar case and (zo-z(6', t))/r,2 in the 
spherical one) every eighth of the rotation period, Tp = 4x/w = 2 .  
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FIGURE 1 .  ( a )  A typical initial disturbance to  a circular vortex on the plane or the sphere after 
stereographic projection. (b )  The section from A to  H in ( a )  as seen in the numerical calculations 
throughout the paper. The angular extent of the section may vary from calculation to  calvulation 
in order t o  focus attention on the disturbance evolution. 

Figure 2 displays a planar calculation starting from an tisymmetric initial 
conditions (a = 0.025, m = 40). At the beginning, one observes a nearly periodic 
repetition of the initial condition with a period of Tp (explained in the following 
section). A little after 6 periods, the character of the disturbance changes 
qualitatively. Filamentation commences a t  t = t ,  z 12.6 with the formation of the 
first filament. Filamentation immediately follows the formation of infinite wave 
steepness, that is to say when part of the contour is vertical, and for this reason it 
is convenient to define t ,  as the time when infinite wave steepness is reached. This 
stage of the evolution has been reported by other researchers (Deem & Zabusky 
1978; Pullin 1981; Stern 1985; Stern & Pratt  1985, among others), but the 
subsequent evolution, in which filaments are repeatedly drawn out of the interface, 
has never been seen before (see figures 3 and 4 for close-up views at the beginning of 
filamentation and near the end of the calculation). The period of filament generation 
nearly equals that of the undular disturbance in linear theory, T,. Note how the 
filaments towards the end of the calculation excite additional disturbances along the 
vortex boundary. These disturbances add to the growing complexity of the flow by 
steepening and producing filaments themselves. 

The previous calculation began with an antisymmetric disturbance. Altering only 
the symmetry of the initial disturbance, by making it symmetric, one finds that the 
evolution qualitatively parallels that  just described. The only notable difference is 
that the steepening takes longer, t, z 19.75. 

On the sphere, however, the form of filamentation qualitatively varies as a 
function of the mean axial position of the vortex. The most extreme case is when the 
vortex occupies an entire hemisphere (zo = 0, see figure 5). Filamentation begins at 
t = t ,  z 20.9 and then, unlike the planar calculation illustrated above, filaments are 
alternately sent to  either side of the mean position of the vortex boundary (see figure 
6 for a close-up late in the evolution). This difference bet,ween the planar and 
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FIauRE 2. The evolution of an initially antisymmetric disturbance to a circular vortex on the plane 
(consult table 1 for numerical parameters and diagnostics; this is case 13). Time, labelled every 2 
units, increases uniformly downwards. 

hemispherical calculations is a consequence of the shear associated with the 
equilibrium vortices in the two cases. In  the planar case, the shear is all on 
the outside of the vortex (the inside, in equilibrium, simply rigidly rotates). In the 
spherical case, however, the shear is of equal magnitude but opposite sign on 
the inside and outside of the vortex, because the vorticity in the lower hemisphere 
is just the opposite of that in the upper hemisphere. 

When the equilibrium vortex is situated midway between the pole and the equator 
( z  = 2 / 2 / 2 ) ,  the shear is neither all to one side nor equal in magnitude on the inside 
and outside of the vortex (see figure 7) .  The evolution, however, resembles the planar 
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FIauRE 3. An enlarged view of part of figure 2 a t  the onset of filamentation, between t = 12.75 
and 16.75. 

case more than the equatorial one. It takes a value of zo between 0.25 and 0.5 to 
generate filaments on both sides (these calculations are not listed in table 1) .  

So far, we have seen that the ‘sphericity’ zo is the only parameter that 
qualitatively alters the form of filamentation. The other parameters which specify 
the amplitude, shape and symmetry of the initial disturbance may delay or speed up 
the steepening of the disturbance, but these parameters do not affect the qualitative 
nature of the evolution after filamentation commences. 

The remainder of this section examines the dependence of the filamentation time 
t ,  on the parameters a ,  B,, zo and symmetry. Table 1 lists the calculations performed, 
algorithm parameters for each, and several diagnostics including a measure of 
accuracy. 

First, consider variations of the disturbance amplitude a with fixed 0, = n/40 and 
zo = 0 (equatorial vortices). Figure 8 displays t, versus (40a)-2 for a = (2/3):/40, 
1/40 and 2/2/40 from which it appears that  t,oca-2 for both symmetric and 
antisymmetric initial conditions. 
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FIGURE 4. Same as in figure 3 but later in the evolution, between t = 20.75 and 24.75. Filaments 
are now being generated from multiple centres along the interface. The undulating interface ahead 
of the filamentation region causes parts of the filaments to develop forked structures by the action 
of oscillatory strain and shear. At this stage in the evolution, over 3600 nodes are being used to 
resolve the contour while the calculation began with 750 nodes. Excessively thin vorticity features 
are being removed by surgery a t  a scale 50 times smaller than the plotted line width. 

Next, consider variations of the disturbance extent 0, and amplitude a in such a 
way that the product am = 1. Such a variation simply shrinks or expands the 
disturbance while preserving its shape. t ,  versus l / m  is shown in figure 9 for both 
symmetric and antisymmetric initial conditions in planar geometry. t ,  grows rapidly 
with l /m, possibly indicating that sufficiently broad disturbances will never 
commence filamentation. But, as l / m + 0 ,  t ,  tends to become independent of the 
disturbance extent. 

Finally, consider variations of the sphericity zo with a = 0.025 and m = 40. 
Figure 10 shows that t, decreases with 2," - filamentation occurs most readily in planar 
geometry. 
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FIGURE 5. Filamentation of an initially antisymmetric disturbance to a vortex of hemispherical 
extent (case 19 of table 1). 

4. Weakly nonlinear theory for circular vortices 
By way of a mathematical analysis valid for shallow undular disturbances, the 

numerical results of the previous section, before the onset of filamentation, are 
extended in this section to include disturbances of arbitrarily small initial steepness. 
It is through this analysis that we can determine that almost all initial disturbances 
eventually commence filamentation. 
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FIGURE 6. A close-up of figure 4 between t = 23 and 27. 

The essential fact that makes the mathematical analysis possible is that, in a 
rotating frame that brings particles to rest along the equilibrium vortex boundary 
(Q = t w ) ,  linear disturbances proportional to exp ( imQ+id) ,  m > 0, have identical 
frequencies, v = &, both on the plane and on the sphere. This implies that a general 
initial disturbance of the form 

W 

p(6 ,O)  = po+ C p m  eims+c.c. 
m=1 

evolves periodically, in linear theory, according to  

m 

p ( 8 , t )  =po+eiiwt 2 p m  eims+c.c., 
m = l  

(3) 

(4) 

where C.C. denotes complex conjugation and po is a constant equal to the average 
value of p. 

The weakly nonlinear equations are derived by using (4), but with time-dependent 
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FIGIJRE 7. Filamentation of an initially antisymmetrir disturbance to  a vortex at a latitude of 
45" north (rase 20 of table 1 ) .  

coefficients pm(t) ,  and by assuming both p(8 , t )  and app(B,t)/aO are O(a)  << 1 
puts 

cc 1 

If one 

(5) 
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Fig. 
Case no. 

1 -  
2 -  
3 -  
4 ~- 

5 -  
6 -  
7 -  
8 -  
9 -- 

10 - 

11 - -  

12 - 

13 2 4  
14 - 
15 - 

16 - 

17 - 

18 - 

19 5 , 6  
20 7 
21 - -  

22 17 
23 20 
24 19, 21 
25 18 
26 - 
27 -- 

28 - 

29 - 

30 - 

Rym zo 

S I  
s 1  
s 1  
R 1  
S l  
8 0  
S O  
s o  

$ 1  
s t  
A 1  
A 1  
A 1  
A 1  
A 1  
A 0  
A 0  
A 0  

A 1  
s 1  
S t  
S 1  
s 1  
8 1  
s 1  
s t  
s 1  
A 1  

s . \ /2 /2  

A 4212 

m 
60 
40 
30 
20 
L O  
40 
40 
40 
40 
40 
40 
60 
40 
30 
20 
10 
40 
40 
40 
40 
40 
20 
20 
20 
20 
20 
20 
60 
a3 
co 

a 

1/40 
t /60 

1/30 
1 /20 
1/10 

1/40 
1/40 
1/40 
1 /so 
1/60 

1/30 
1/20 
1 / 10 

2/2/40 

1/2/40 
(2/3):/40 

1/40 

(2/3):/40 
1/40 
1 /4O 
1/40 

2/2/20 
42 /20  
42 /20  
2/2/20 
42 /20  
1/2 /20  
1/80 

0 
0 

'4 / a  t f 

0 17.7 
0 19.7 
0 21.5 
0 25.5 
0 43.7 
0 17.7 
0 53.5 
0 35.6 
0 27.4 
0 21.2 
0 95.7 
0 12.6 
0 12.6 
0 12.7 
0 14.7 
0 20.9 
0 11.8 
0 33.3 
0 20.9 
0 16.9 
0 12.6 
0 13.2 

1/64 
1/32 
1/16 
118 
114 

0 
0 
0 

13.5, 14.0 
14.1, 15.6 
17.4, 19.5 
22.0, 28.3 

> 30 
17 .O 
15.3 
10.5 

Ec 
(degrees) t ,  

1.27 x 10-5 22.25 

1.14 x 30.00 
4.76 x 28.50 
4.78 x 47.75 

3.50 x 10-4 31.75 

,533  x 10-3 29.00 
9.19 x 1 0 - 4  53.50 

3.66 x 10-4 3'~.5o 
1.04 x 10-3 98.00 

9.29 x 10-5 24.80 

3.39 x 1 0 - 3  45.00 
3.11 x 10-2 36.50 

2.09 x 1 0 - 6  19.00 

1.44 x 22.00 
4.82 x 23.25 
8.19 x 28.00 
2.49 x 10- 23.50 
1.35 x 1 0 - 4  33.50 
1 . 8 5 ~  1 0 - 3  27.25 

9.02 x 10-5 22.50 
1.55 x lo-' 28.00 

1.41 x 27.75 
1 . I9 x 20.00 
1.67 x 10- ' 20.00 
2.25 x 10-' 23.75 
3.43 x 10P 28.50 
3.19 x 29.75 
1.93 x 10-' 29.40 
7.68 x lW4 18.25 
2.99 x 15.00 

P 6 
0.010 1x10-5 
0.012 1 x 1 0 - 5  

0.020 2~ 10-5 
0.015 2~ 10-5 
0.010 I x 10-5 
0.012 1 x 10-5 

0.012 1 x 10-5  
0.008 1 x 10-5 
0.010 1 x 1 0 - 5  

0.009 1 x 10-5 

0.020 2 x 10-5  
0.015 2 x 10-5 

0.012 I x 1 0 - 5  
0.012 1 x 10-5 
o.oiz 1 x 10-5 
0.020 2 x 10-5 
0.020 2~ 10-5 

0.020 2~ 10-5 

0.015 2~ 10-5 
0.015 2~ 10-5 

0.013 1 x 
0.015 1 x 10-5 

0.012 1 x 10-5 

0.013 1 x 
0.015 1 x lo-' 

0.010 1 x 

0.020 2 x 10-5 
0.020 2 x  10-6 

0.020 2 x 10-5 
0.015 1 x 

TABLE 1. Various parameters and diagnostics for the numerical calculations discussed in this paper. 
'Sym'  denotes symmetry, I', being symmetric and A antisymmetric, zo is the sphericity, m and a 
together specify the size and shape of the disturbance, A is the  interface width (used only in cases 
23-27), t, is the filamentation time (the two entries for cases 23-27 correspond to  t, on the upper 
and lower contours), cc gives one measure of accuracy though the accumulation of' phase error (in 
degrees) by the end of the  calculation t = t,, and ,IL and S are algorithm parameters described in $ 2 .  
Cases 10 and 21 use the modified initial condition r (0 ,O)  = [1+2p(O,O)]; t o  correspond to  the 
spherical calrulations of cases 8, 9, 19 and 20 (see Appendix A).  (lase 2# is an ellipt,ical vortex 
calculation in which the initial condition is generated by first perturbing a circular vortex and then 
radially distorting the boundary t o  a nearly elliptical shape (it, would be precisely elliptical if the 
originally circular vortex were not perturbed). Cases 29 and 30 are described in Appendix C. 

into the fully nonlinear equations (see Appendix A) truncated at O(a4), one 
ob t airis 

q(a,t) sin (a-0) - aG 
l -cos(ol-~)  at?' 

_ -  

U a2 U2 t )  - Y V >  u3 
2;n ~ ; c  

G(8,  t )  = -2" q2 -- (z;  + 1) q ~ ~ - ~  ( ~ g +  1) q3 -__ da 
4 4 6 1-cos((a-8) ' 

where the function G contains all the rionlinearity up to cubic order (the planar 
result, obtained by putting z,, = 1, and by replacing 7 by q + i q 2 ,  is actually more 
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0 0.5 1 .o 1.5 
( ~ O U ) - ~  

FIGURE 8. The variation of the filamentation time 1, with the inverse-squared amplitude of the 
disturbance for fixed extent 8, = n/40 and sphericity zo = 0 (equatorial vortices). Data for both 
symmetric (upper triangles) and antisymmetric (lower triangles) initial conditions are shown. 

40 501 
"4 A A 

A 

A 

A 

0 0.02 0.04 0.06 0.08 0.10 

l l m  

FIGURE 9. t ,  versus disturbance size (measured by l / m )  for planar vortices. Data for both 
symmetric (upper triangles) and antisymmetric (lower triangles) initial conditions are shown. (The 
calculations with l / m  = 0, cases 29 and 30 of table 1, were performed with a periodic version of the 
planar contour-surgery algorithm discussed in Appendix C.) 

difficult to derive than the above spherical result !). Using (5 ) ,  one finds that the left- 

but the function C(8, t )  + 1 ; therefore, A must depend on at  least two timescales, t 
and, as shown in Appendix A, a2t - not at. The quadratic nonlinearity, ~ z , ~ ~ ,  is not 
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FIGURE 10. t ,  versus 2: for fixed disturbance amplitude a = 1/40 and extent 8, = n/40. Data for 
both symmetric [upper triangles) and antisymmetric (lower triangles) initial conditions are shown. 
The calculations with z, = 1 were performed using tbe planar numerical algorithm but  with the 
initial disturbance modified to r(8,O) = [1+2p(8, 0)]5 to ensure a proper correspondence to the 
spherical calculations [see Appendix A) .  

alone responsible for the evolution of the envelope A (indeed, this term is altogether 
absent for equatorial situations, 2, = 0). Expanding A(0,  t )  in the series 

A ( 0 , t )  =Ao(e,7)+aA,(e,t,7)+a2A,(8,t,7)+ . . . )  ( 8 )  

with r = wa2t, one finds that A ,  evolves according to  

a A O ( O , T )  a s ,  
a7 ae - 

1 2n (A(a,  7 )  - A ( 0 ,  7)I2[A(a, T) - -A (B ,  7 ) ]  

-GIo da 1-cos(a-0)  
cc 

A , ( @ , T )  = C aOm(7) eimH, 
m = l  

(9) 

W 

W,(B,T) = C wOm(7) eim*, 
m = l  

m 

Mol2 = wo+ w,* + C laom12, 
m=1  

the last equation defining W, (* denotes complex conjugation). In  the first equation, 
only the part of B, that can be expressed as xz=l bom(r) eime is intended. Knowledge 
of A ,  allows one to compute higher-order terms explicitly; for example, A, is given 

(10) 
bY ~ ~ ( 0 ,  t ,  7) = iz - - ( H I  a e-3wt-lA2 e t i W t  

2 0 1. 
O a o  o 
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zo = 0 

FIGURE 1 1 .  A comparison between the weakly nonlinear theory (solid lines) and the fully nonlinear 
theory (dashed lines) for initially symmetric disturbances for three latitudes : equatorial (zo = 0), 
mid-latitudes (2, = 4 2 / 2 ) ,  and polar ( z ,  = 1 ) .  Time proceeds downwards in the three cases with 
successive curves drawn two disturbance periods (At = 4) apart. Kote that steepening always 
occurs on the right whereas the opposite occurs on the left. 
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/-- 

zo = 0 

7 

1 

FIGURE 12. Same as in figure 1 1  but  for antisymmetric initial disturbances. 

Equations (9) and (10) admittedly look more complicated than the original fully 
nonlinear equations, but the essential property of (9) is that  the right-hand side is 
precisely cubic in A,. This implies that  (9) is unchanged if A ,  is replaced by cA, and 
7 by r / c Z ,  where c is a constant. That is, if the amplitude is halved, the evolution 
proceeds four times more slowly, but the form of the evolution is identical. 

With this observation in mind, consider comparing some of the fully nonlinear 
calculations in table 1 with the weakly nonlinear theory (keeping only A,, and A ,  in 
(9)). Appendix A describes the numerical computation and initialization of (8), and 
only the results of those computations are described here. Figures 1 1  and 12, the 
central results of this paper, compare the weakly nonlinear theory (solid lines) with 
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the fully nonlinear theory (dashed lines) every two disturbance periods for zo = 0, 
2/2/2, and 1 for symmetric and antisymmetric initial conditions respectively (a = 
0.025, m = 40). The poorer comparisons for larger zo are an artifact of initialization, 
which is impossible to  perfect in the weakly nonlinear theory (see Appendix A). 
Nonetheless, given that the weakly nonlinear theory is valid only for small steepness 
(dp(0, t ) / W  < l) ,  the comparisons are remarkable right up to  the time at which 
filamentation commences. In  each case, the numerical solution of the weakly 
nonlinear equation (8) breaks down just after filamentation commences in the 
corresponding fully nonlinear calculation. Thus the weakly nonlinear calculations 
not only closely agree with the fully nonlinear ones over the steepening stage, but 
also predict, by their own breakdown, the approximate time a t  which the vortex 
boundary commences filamentation. 

Had we compared calculations for disturbances, say, half as steep as those in 
figures 11 and 12, we would have found an even closer correspondence. This is simply 
because the weakly nonlinear theory becomes a better approximation of the fully 
nonlinear theory. The weakly nonlinear calculations, however, need not be 
recomputed, for they are the same as shown in figures 11 and 12. Thus, if one could 
perform the fully nonlinear calculations in this case, one would observe filamentation 
once again, occurring after a time four times longer than found for the calculations 
in figures 11 and 12. Again, one could reduce the amplitude of the initial disturbance 
by another factor of two, still better correspondence between the weakly and fully 
nonlinear theories occurring in this case, and again filamentation would eventually 
commence, after a time four times longer still. Of course, there is no limit to this 
sequence : an arbitrarily shallow disturbance will eventually commence filamen- 
tation. 

5. Filamentation of non-circular interfaces 
Figure 13 illustrates the evolution of a small disturbance initially on the right- 

hand tip of an elliptical vortex (semimajor axis length = 1,  semiminor axis length = 
3 ) .  No dramatic change in the gross shape of the vortex occurs, indeed the vortex is 
linearly stable a t  this aspect ratio (Love 1893), but a closer inspection of the 
boundary at a time slightly beyond the last frame (figure 14) reveals great 
complexity. Filamentation in fact commences a t  t = t, z 17 and, compared with the 
circular vortex calculations of $3, leads to a more rapid distortion of the vortex 
boundary. The greater complexity of filamentation results from the additional effects 
of variable shear and strain, effects that, it is shown below, increase the rate of 
steepening of shallow disturbances relative to corresponding disturbances on circular 
vortices. The intuitive argument is given first and the mathematical one follows. 

A very small, localized disturbance (a disturbance with maximum curvature 
greatly exceeding that of the supporting interface) travels around the ellipse as if it 
were a fluid particle on the equilibrium interface, except that  it also undergoes a 
nearly periodic oscillation similar to that occurring on circular vortices. The 
difference from circular vortices is that the velocity field tangent to  the ellipse is no 
longer uniform, giving rise to the additional effects of strain and variable shear. For 
example, as a disturbance moves from the position of the semimajor axis to the 
semiminor axis, the tangential velocity accelerates causing fluid particles along the 
equilibrium boundary to be pulled apart ; fluid particles are then compressed on the 
approach to the semimajor axis. One can see an immediate (linear) effect on a 
disturbance : the disturbance stretches while travelling from the semimajor to  the 
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I------ 0.01 ------i 
FIGURE 14. A greatly enlarged view of a small part of the elliptical boundary a t  t = 29.35 (the 

interior of the vortex is on the left). 

semiminor axis and compresses (steepens) on the journey from the semiminor to  the 
semimajor axis. The nonlinear effect is to more quickly steepen the disturbance 
during the periods of compression than during the equal periods of extension. A net 
gain in steepening is thereby registered over the steepening that would be experienced 
by a disturbance of the same form on a circular vortex. 

The qualitative arguments above may be justified by the mathematical analysis of 
Appendix B from which only the central results are taken. These include two. The 
first proves that infinitely localized disturbances (defined below) obey fully nonlinear 
equations for the evolution of a disturbance to an infinitely straight contour in the 
presence of time-varying strain and shear. The second shows that a universal 
equation, dependent only on the shape of the initial disturbance and some integral 
measure of strain and shear, governs the steepening of shallow disturbances under 
very general circumstances. 

Under the conditions that the amplitude and extent of a disturbance be 
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exceptionally smaller than any lengthscale in the supporting (piecewise-constant) 
flow, that is, less than the minimum radius of curvature of the interface along which 
the disturbance propagates and less than the distance between interfaces if there are 
more than one, and under the single further condition that the curvature of the 
disturbance (the ratio of its amplitude to its extent squared) greatly exceeds the 
curvature of the supporting interface, the disturbance, in a right-handed coordinate 
system moving along the supporting interface (as illustrated in figure 15), satisfies 

Here, the disturbance has been scaled by its (infinitely) small extent, C, is an 
infinitely long curve (the vorticity interface in these scaled coordinates) for which 
q + O  as !El-. 00, y( t )  is the strain parallel to the interface at the position of the 
disturbance, and a( t )  is the shear. a is equal to twice the rotation rate of 
the coordinate axes minus the average of the vorticity just inside and outside the 
interface. y and a depend only on the (basic state) velocity gradients along the 
supporting interface - they are independent of the disturbance - and for steady 
supporting flows (e.g. a rotating ellipse, see Appendix B for details), y and a are 
periodic functions of time, with a period equal to the time a particle takes to circuit 
the interface. Note that (11) predicts the same form of evolution for a given 
disturbance shape of arbitrary scale. 

The restriction to  infinitely localized disturbances is essential to the derivation 
of (11) and renders it amenable to a weakly nonlinear, two-timescales analysis. 
Without the assumption of infinite localization, disturbances to variable-curvature 
interfaces do not have equal frequencies in any reference frame, and it is this 
equal-frequency requirement that  is vital to  the weakly nonlinear theory. Of 
course, the straight supporting interface in (1 1) does support equal-frequency linear 
waves, exp[i(kt-$wt)], k > 0, and an analysis similar to that described in $4 and 
Appendix A for circular vortices (see Appendix B) produces 
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FIGURE 15. The local coordinate system defined by the motion of the fluid particle xo(t )  along 
the supporting intrrface. 

b 

where, as in the circular case, W, is one-half of the spectrum of only one-half of 
the spectrum of R, is intended, * denotes complex conjugation, and the constants 
(b2) and cr are integral measures of the strain and shear (see Appendix B). (p') may 
be absorbed into the definition of the long timescale r .  in which case the envelope 
equation for A,  is seen to depend only on the shape of the disturbance and the 
constant cr. 

This simple structure of the envelope equation has important implications for the 
evolution of shallow localized disturbances. In the previous section, close agreement 
was demonstrated between the fully and weakly nonlinear calculations (figures 11 
and 12) for circular vortices. And from this correspondence and the mathematical 
structure of the weakly nonlinear equations, we concluded that arbitrarily shallow 
disturbances eventually commence filamentation. The same conclusion, i t  is argued, 
applies to the evolution of infinitely localized disturbances under very general 
circumstances. First, the weakly nonlinear equation (12) is simply the limiting form 
of the corresponding equation for circular vortices (9), for cr between 0 and 1 .  Second, 
the data presented in figure 9 show that localized disturbances commence 
filamentation sooner than less localized ones, all other things being equal. Third, the 
data of figure 10, with v identified with z& suggest that the filamentation time would 
continue to decrease if cr was taken to values greater than 1.  These facts combined 
with the observed close agreement between the fully and weakly nonlinear 
calculations in figures 11 and 12 support the view that filamentation eventually 
occurs for almost all initial disturbances of any steepness whatever. 

6. Filamentation of finite gradients of vorticity 
In  this section, a series of numerical calculations is used to  examine the evolution 

of shallow disturbances to sharp but not infinitely sharp vorticity gradients. It is 
found that disturbances with amplitudes greatly exceeding the effective width of the 
interface evolve in much the same way as they would on an interface of zero width. 
Filamentation is not simply an artifact of the questionable assumption of piecewise- 
constant vorticity. However, profound differences are seen to occur when the 
disturbance amplitude is comparable with (but still a factor of ten larger than) the 
interface width. 

To demonstrate these effects, a finite gradient of vorticity is approximated by 
replacing a single circular contour (on the plane) by two contours separated initially 
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I 
FIGURE 16. Two interfaces across each of which the vorticity jumps by @ and the associated 

velocity field. 

by a width A .  The use of two contours can be justified, so long as the interface width 
remains much smaller than the radius of curvature of the mean interface position, by 
noting that the linear long-wave dispersion relation has a form common to all profiles 
of vorticity across the interface. For example, in the simpler but relevant problem of 
two straight interfaces, across each of which the vorticity jumps by $ (see figure 16), 
one eigenmode is sinuous and the other varicose. The sinuous one describes the 
motion of the mean interface position, and a disturbance of the form exp [i(kx-vt)] 
has the following dispersion relation for wavelengths long compared with the 

(13) 
interface width p : 

0- = $ [ l + $ ( k A ) 2 ] ,  

clearly indicating the dispersive nature of two interfaces. The key point is that the 
same, long-wave dispersion relation holds for general profiles of vorticity, only the 
constant multiplying ( kA)2 depends on the profile. 

The calculations are initialized as follows. After adding, a symmetric disturbance 
(u = 62/20, m = 20) to a unit circular vortex, the resultant boundary is divided into 
two by multiplying it by 1 + + A  and 1 - $ A .  The case with A = 0 or no interfacial 
width is given in figure 17. By t = t ,  NN 13.2, filamentation commences, and proceeds 
with growing complexity as observed previously (e.g. figure 2 ) .  Figures 18, 19 and 20 
show calculations with three successively smaller values of A : a / l 6 ,  a/32 and a/64. 
The new phenomenon illustrated in all three figures is the formation of a pocket of 
intermediate-vorticity fluid between the two contours; see figure 21 for a close-up of 
figure 19). The pocket forms by the nonlinear pumping, by the undulating 
disturbance, of fluid from the stretching interface to the left of the pocket. The 
stretching is accomplished by the variation of strain induced by the disturbance 
along different parts of the interface; compression near the pocket brings fluid into 
it. The secular effect of this action is to swell the pocket until the mean shear can 
succeed in tilting part of the disturbance over. The filamentation of a single interface 
occurs for precisely analogous reasons, except that  the pocket is infinitely thin. 

Figures 18-20 demonstrate convergence to the single-interface calculation of figure 
17. Not only does the pocket get smaller with decreasing interface width, but the two 
interfaces begin to commence filamentation together. On the other hand, widening 
the interface, say to twice the width shown in figure 18, further delays filamentation 
and gives rise to an extended pocket region upon which varicose disturbances can be 
seen to propagate away from the left-hand position of the pocket (not shown). Upon 
widening the interface by another factor of two ( A  = a / 4 ) ,  no filamentation is seen 
to take place up to t = 30 although some steepening is observed (not shown). The 
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Fig. 17 

FIGURE 17.  Filamentation in the limit of zero interface width (a single contour). This figure should 
be compared with figures 18-20 in which the interface widths are finite (case 22 of table 1). 

FIGURE 18. As in figure 17 but for an interface width A = a./16 (case 25) .  
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Fig. 19 Fig. 20 

FIGURE 19. As in figure 18 but  with half the  interface width A = a132 (case 24). 
FIGURE 20. As in figure 19 but  with half again the interface width A = a164 (case 23). 

numerical results are summarized in figure 22 with a graph of the filamentation time 
on either interface versus the interface width/amplitude ratio. 

Finite gradients of vorticity are thus seen to dramatically afYect filamentation. The 
details of filamentation, e.g. the nature of the pocket, almost certainly depend on the 
profile of vorticity assumed, but the most important effect of a finite interface is to 
retard filamentation for amplitudes comparable with the interface width. However, 
filamentation, in the sense that vorticity contours eventually buckle, probably 
occurs even for these amplitudes. Indeed, in the extreme case opposite to an infinitely 
sharp interface, that of arbitrarily shallow disturbances to a flow with a uniform 
vorticity gradient, the vorticity contours still buckle (see, for example, figure 1 of 
Haynes 1987). 
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FIGURE 21. An enlarged view of the interface in the intermediate case (figure 19) between 
t = 16 and 20. 

7. Discussion 
Filamentation may be regarded as one particularly interesting case of a more 

generally defined phenomenon, that of Rossby-wave breaking (Mclntyre & Palmer 
1983, 1984, 1985). Rossby-wave breaking encompasses any unsteady motion 
characterized by the irrevocable deformation of vorticity contours (in an inviscid, 
incompressible fluid). Filamentation, by contrast, is the eventual qualitative change 
in the behaviour experienced by small, shallow disturbances to  sharp interfaces of 
vorticity, disturbances that had been thought to remain undular forever (Stern 1985 ; 
Stern & Pratt  1985). 

On the basis of the calculations in the previous section, in which a finite interface 
was seen to dramatically retard filamentation (cf. figure 22), it is hypothesized that 
filamentation acts to suppress itself by widening the interface through the nonlinear 
mixing of vorticity across the interface. The mixing is not assumed to be perfect, 
rather, a band of sheared two-dimensional turbulence is envisaged whose width is of 
the same order as the amplitude of the initial disturbance. 
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A 

A 

A 

A 

A l a  

FIGURE 22. A summary of the finite interface calculations. The filamentation time t ,  is plotted 
versus A / a  for both the upper and the lower contours. 

The results of this paper do not apply to  disturbances whose extent or effective 
wavelength is comparable with the radius of curvature of the supporting interface. 
Indeed, in figure 9, the filamentation time was found to rise sharply with the extent 
of the initial disturbance, suggesting that either filamentation takes a very long 
time or else never occurs for disturbances sufficiently broad. It seems inconceivable, 
however, that an unsteady (aperiodic) flow can resist accessing more and more of the 
infinite spectral range of smaller scales. That is, nonlinear interactions in an unsteady 
flow seem likely to excite continually smaller scales until a scale is reached a t  which 
filamentation occurs. 

Recent high-resolution spectral calculations of a one-layer model of the wintertime 
stratosphere (Juckes & Mclntyre 1987) have illustrated the importance of nonlinear 
vortex dynamics in shaping the structure of an intense vortex situated close to the 
winter pole. The arrival of planetary-scale Rossby waves from the troposphere below 
subjects the vortex to a disturbance whose amplitude is much larger than those 
considered in this paper. The effect of the initial, larger-amplitude wave-breaking 
event is to sweep away the outermost (potential) vorticity contours of the initially 
broader vortex, thereby creating a narrow band of exceedingly high vorticity 
gradients. (A similar mechanism of gradient intensification operates for sufficiently 
eccentric elliptical distributions of vorticity in planar geometry - see Melander, 
McWilliams & Zabusky 1987 and Dritschel 19886, figures 11 and 12). These extreme 
gradients of vorticity then become susceptible to filamentation. Small perturbations, 
perhaps arising from the inhomogeneities in the surrounding relatively wcak 
vorticity field, inexorably steepen and commence filamentation. In  summary, major 
nonlinear events, events that alter the large-scale structure of the flow, rapidly 
intensify vorticity gradients surrounding intense vortices while the more subtle 
nonlinear process of filamentation utilizes small, arbitrarily small, perturbations to 
diminish (in a coarse-grained sense) the vorticity gradients. I n  an episodically forced 
system like the stratosphere, or in turbulence, both processes operate simultaneously 
to produce exquisitely complicated behaviour. 
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Appendix A. Weakly nonlinear theory for circular vortices 
In this Appendix, shallow disturbances to circular vortices on the plane or the 

sphere are shown to satisfy a cubically nonlinear envelope equation evolving on a 
timescale inversely proportional to the initial amplitude of the disturbance squared. 
The essential characteristic of this equation is that its form of evolution is 
independent of the disturbance amplitude. The following derivation applies to the 
fully spherical case, the planar result being obtained as an appropriate limit noted 
below. 

Suppose the equilibrium vortex lies a t  the axial position x = zo,  - 1 < zo < 1. The 
disturbed vortex is most conveniently represented in the form 

z ( O , t )  = z o - r ; p ( O , t ) ,  (A 1) 

where ri = 1-202, for then the perturbation shifts the equilibrium colatitude by the 
approximate amount rop(O, t )  and also because the relationship between p and the 
corresponding disturbance quantity on the plane in the limit zo+ 1 is simple. 

Using the following parameterization for the contour : 

the contour dynamical equations ( l ) ,  in a frame of reference rotating at half the 
vorticity jump across the interface, may be rewritten as 

The immediate task is to simplify these equations under the condition that both p 
and ap/aB are small compared with unity. Only terms up to  third order are required, 
and for this it is necessary to expand r and log Ix(cr, t )  -x(O, t)12 to only second order 
(here the planar derivation is more difficult, since third-order terms would be 
required). These expansions take the form 

r = r O ( i + 2 z o p - r ; p * ) t  

z ro(l +zop-$P), 

l o g ( ~ ( a , t ) - x ( O , t ) ) ~  z constant+log[l-cos(cr-O)]+zop(a,t) 

where the constant depends on 19 and t but not a and so contributes nothing to the 
integrals in (A 3). 

In  the planar case, the natural definition of tho perturbation is r / r o  = 1 + p .  One 
may therefore obtain the planar results by putting zo = 1 and replacing p by 
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p" + ip"' throughout (equivalently, of course, one can repeat this exercise starting 
from planar contour dynamics, but the task is more arduous and the result less 
pleasing !). 

The expressions for dp/dt and d0/dt follow after considerable yet straightforward 
algebraic manipulations, whence from 

(A 5) 

and upon substituting the expression 

one obtains (6) rewritten here for clarity 

Since the nonlinear function G is O(a)  << 1, the solution to (A 7 )  depends on at  least 
two timescales. One might expect a dependence on the long timescale at, but the 
periodicity of the lowest-ordcr solution necessitates the choice a%. Defining then 
7 = wa2t (a non-dimensional time), the solution is sought by way of a perturbation 
series depending on two timescales (see Guckenheimer & Holmes 1983. chap. 4 
and references therein) : 

(A 8) I r (6 ,  t )  = A(0,  t )  etiwt + C.C., 

m 

A(O,t) = C a,(t) elms 
m = l  

= A , ( B , ~ ) + ~ A , ( H , ~ , ~ ) + u ~ A ~ ( B , ~ , ~ ) +  . . . .  

J aL4 aA ' A ,  aA 
at at 
- =,-,a( at - - + w L  a7) +..., 

where the A,, like A ,  are expressed as sums over positive m. This choice of 
decomposition automatically satisfies (A 7)  a t  the lowest order. At ( ) (a ) ,  (A 7 )  
yields 

where W0(t9,7) is the part of JAo)2 involving only the spectral series in positive m. 
Equation (A 9) has the particular solution 

The homogeneous solution could be a general function of 0 and 7, but for reasons of 
initialization discussed below, i t  is set to zero (this is equivalent to  absorbing the 
homogeneous solution into the definition of Ao). 

At O(a2) ,  (A 7) yields two equations, one for the evolution of A, (on t>he timescale 
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t )  and the second for the evolution of A, (on the timescale T ) .  The second equation 
results from equating terms that would otherwise lead to secular growth of A,, terms 
proportional to eiiWt and expressible as a series in eimH for positive m. This equation 
is 

I 
1 2"daIA(a, 7)-A(0,7)12[A(a,~)--A(0,~)1 

-Gi 1, i - cos (.-el 
where only the part of H, expressible as Cg=l bOm(7) eimH is intended. Equivalently, 
the spectral coefficients am(7) of A ,  (dropping the subscript 0 for notational 
simplification) satisfy 

where the double sum is constrained by n + p  > m. 
I n  numerical calculations, (A 1%) requires O(M3)  operations per time step if only 

the first M coefficients are kept, whereas a pseudospectral method for (A 11) 
described next requires only O ( M 2 )  operations. In the pseudospectral method, the 
right-hand side of (A 11) is evaluated on a mesh of 2M equally spaced points in 0 
using centred differences wherever derivatives appear, and the result is then 
transformed to give the evolution (through a fourth-order Runga-Kutta method 
with time step AT = 1/(27c)) of the M = 1024 spectral coefficients. This transform has 
the effect of saving only that part of the right-hand side of (A 11) having a series in 
positive m. Similarly, a transform of (A,J2 yields the spectral coefficients of W, and 
therefore W ,  itself. 

Initialization of (A 11) is accomplished as follows. The spectral coefficients of 
A(8,O) are supplied by the transform of the given initial condition v ( O , O ) ,  and 
A,(@, 0 )  is obtained by the following symbolic inversion : 

known --f A = A ,  + aA ,[A,] + . . . , (A 13) 

with the functional dependence of A,  on A ,  set by (A 10) at t = 0. The solution for 
A ,  may then be obtained in the form of a perturbation series, 

(A 14) 

and in this paper, owing to the great complexity of the quadratic-order term, only 
the first two terms in (A 14) are used. As a result, the calculations in figures 11 and 
12 suffer from observably imperfect initialization, yet they nevertheless capture 
many aspects of the fully nonlinear evolution. 

A ,  = A -aA,[A] + 0(a2) ,  

Appendix B. The evolution of a localized disturbance on a vorticity 
interface 

Fully nonlinear numerical calculations of the kind illustrated in this paper cannot 
determine whether or not an arbitrarily shallow disturbance will eventually 
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commence filamentation. The equations of motion are simply too difficult to solve 
accurately. Instead, by assuming that the disturbance is confined to only a small part 
of the vortex boundary, it is possible to reduce the problem to that of a disturbance 
to an infinite interface of vorticity. These ‘localized’ equations, derived in the first 
part of this appendix, are no less nonlinear than the original equations of motion but 
do let one consider an arbitrarily small disturbance. The steepening process is 
isolated by further assuming that the disturbance is shallow, expanding the localized 
equations in a perturbation series, and performing a two-timescales analysis. The 
result of this exercise, the thrust of the second part of this appendix, is a universal 
equation governing the steepening of arbitrarily shallow, localized disturbances 
propagating on general vorticity interfaces. 

B. 1. The localized equations 
Contour dynamics was named for the following property of a piecewise-constant 
vorticity distribution : the boundaries of vorticity discontinuity or ‘ contours ’ alone 
determine the velocity at any point in the fluid. The evolution of the contours 
depends only on the positions of and the jumps in vorticity across the contours. For 
a single vortex patch embedded in unbounded irrotational fluid, the velocity a t  a 
point x is ” 

u =  -- f log Ilx-x’1I2dx’, 
4n c 

where C denotes the boundary of the vortex traced out by x’ with the inside of the 
vortex on the left of C, and w is the uniform vorticity within C. 

The immediate task is to simplify (B 1) in the case that the contour C differs only 
slightly from an equilibrium or steady contour c over a small part of c. More 
precisely, the disturbance to 6 that gives rise to C is assumed to have an amplitude 
a and extent S much smaller than the radius of curvature of 6, where C and differ. 
(It is also assumed, trivially, that the ratio of a to S is a t  most order unity.) However, 
this is not sufficient to specify the disturbance ; it is also necessary for the disturbance 
curvature, measured by a/S2, to greatly exceed the curvature of the equilibrium 
contour. This final condition removes the effect of dispersion arising from variations 
in curvature along the vorticity interface. The need for these conditions is made 
apparent in the analysis to follow. 

To simplify notation, a reference frame is chosen that freezes e. Arclength s can 
then be used to identify a point z on 6. Let the ‘ centre ’ of the disturbance be given 
by s = so(t), where t denotes time. Because the disturbance is localized, its centre 
may be taken to be a fluid particle on (7 in which case dso/dt = So = qo = IIa[x(s,(t))]ll. 
I n  the following, equilibrium quantities evaluated a t  so are subscripted by ‘0’  with 
the bar removed, e.g. xo(t) = x[sO(t)] .  

Next, a right-handed Cartesian coordinate system ( ( , q )  centred on xo is introduced. 
The positive (-axis is directed tangent to f? (in the direction of decreasing s), and the 
positive q-axis points normally outward. The coordinate transformation is defined by 
the unit tangent and normal vectors, to and ii,, a t  s = so(t) (see figure 15) 

6 = -~o.(x-xo), q = fio.(x-xo). (B 2) 

.g = -&.(u-uo)+Aq,  ?j = i i o . ( U - U o ) - A [ ,  (B 3) 

Taking a time derivative of (B 2 )  and then replacing x - xo by - tio + qii, yields 

where A = io.diio/dt = qo K ~ ,  K~ being the curvature along the equilibrium vortex a t  
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the centre of thc disturbance. A is the rotation rate of the transformed coordinate 
system. 

Assume next that the point x is on C. It remains to express u-U, in terms of the 
transformed coordinates. u ( x )  - u, can be rewritten as AU, + Au2 with Au, = 
u ( x )  - n(x) and Au2 = ~ ( x )  - ~ ( x , ) .  Aul is thc difference between the perturbed and 
equilibrium velocity a t  x, while Au2 is the difference between the equilibrium velocity 
a t  x and x,. 

First consider the simplification of Au,. Since G and 6 differ negligibly except very 
near x,, Au, depends only upon the contour segment C, and the very nearly 
flat segment C, shown in figure 15. Along C,, x’-x, = -&fo+rl’rio, while along 
C,,x-x, z -go, so that 

Au, = E jc, log[(5-~)2+(y-1;1’)2]{-~od&+ri,dy’} 

(B 4) 

a sign change coming from reversing the direction of the contour integrations. 
Finally, consider Au, = ~ ( x )  -n(x, ) .  Define p ( [ , ~ )  = - t“,-n(x) and F((,y) = ri, 

. n(x) .  p and  are the velocity components parallel to the 5- and y-axes respectively. 
Then to first order in a Taylor series expansion, 

The higher-order terms in the Taylor series involve products of the small parameters 
UK,, SK,, and S2K,/a (assuming that amfn(po,  vo)/amgany scales as W K : + ~ - ~ ,  m+n 2 2) 
as do the neglected terms in (B 4) above. 

Thc equilibrium velocity gradients are related by a continuity equation and a 
vorticity equation : 

(B 6)  - + o , o  aiLo av avo apo - 

a t  a7 ’ a6 a7 
- w ,  

where w = w-252 if 7 < 0, ~;i = -252 if 7 > 0, and 52 is the rotation rate of the 
reference frame in which c is stationary. Because the transformed coordinate axes are 
rotating at  the rate A,  av,/a( = A. The vorticity equation then gives i3p0/i37 = h --is. 
Defining the ‘along-contour strain’ y by 

ap, - d x  du y = ~ - -a- 
a6 ds ds 

at s = so(t) ,  

continuity implies avolay = - y. Equation (B 3) can now be expressed entirely in 
terms of the transformed coordinates : 
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Upon scaling 6 and 7 by the small extent of the disturbance, these equations can be 
rewritten in a more revealing form after making use of the following relation: 

= -blrl. (B 9) 

With the further definition a( t )  = 2h(t)+252-30, (B 10) 

the localized equations in final form are 

where C, is an infinite curve extending from 6 = - co to 00 for which 7 tends to zero 
for large 151. 

B.2. Extensions to more gen,eral vorticity distributions 
Equations virtually identical to those just derived apply equally well to non- 
equilibrium conditions and to general piecewise-constant vorticity distributions. If 
the contour C surrounding a single patch of vorticity is unsteady, the concept of 
disturbance can still be defined as long as there is a spatial and temporal scale 
separation between the disturbance and the basic flow. In  other words, the extent of 
the disturbance is assumed to be much smaller than the radius of curvature of c at  
the position of the disturbance, and the frequency of oscillation of the disturbance 
much greater than the rate at which changes are taking place to the largc-scale 
structure of the supporting interface. The only changes to (B 11)  are in the definitions 
of h and y : h = f,,-dii,/dt no longer equals qo K, ; y in (B 7)  is instead defined in terms 
of partial derivatives with respect to arclength, and arclength is measured from the 
location of the centre of the disturbance, xo( t ) .  

If, in addition, there exists more than one contour (a general piecewise-constant 
vorticity distribution), then as long as the disturbance is much smaller than the 
distance between contours, a disturbance on any one contour obeys (B 11) with a 
minor change in the definition of a : a = 2h -t(wi + w,) ,  where wi is the vorticity just 
inside the contour, and w, is that just outside. 

Finally, (B 11) holds even for generally curved two-dimensional surfaces with or 
without boundaries. Green's function will no longer be proportional to the logarithm 
of distance (except on the surface of a sphere), but the result (B 11) depends only on 
the local behaviour of Green's function which, for sufficiently small disturbances, is  
always proportional to the logarithm of distance. For the same reasons, (B 11) 
continues to apply to  piecewise-constant vorticity flows for which the vorticity is 
related to the stream function via Helmholtz's equation (w  = V2$+h2$)  or even for 
axisymmetric flow (Shariff 1988) as long as the disturbance does not lie upon the axis 
of symmetry (for when it does, see Moffatt & Moore 1978). 

B.3. Weakly nonlinear theory 
Not only does the restriction to infinitely localized disturbances prove vital to the 
derivation of (B l l ) ,  but it also endows (B 1 1 )  with the equal-frequency property 
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necessary for the derivation of an envelope equation evolving on a long timescale. 
The derivation qualitatively parallels that  given in Appendix A but with new twists 
associated with variable strain and shear. 

First, (B 11) is expanded in a perturbation series in wave slope. Equivalently, since 
the disturbance is assumed to have O(1) extent, 7 is replaced by q, e < 1 ,  and, with 
errors of O(e4), (B 11) reduces to 

Next, the terms y( and yq are eliminated from the above equations by a coordinate 
transformation. First, substitute 7 = @[P(t)]i with 

P(t) = exp (- 2 j: y(t ’ )  dt’) 

followed by ( = c/”/p, t = t“ to obtain (after some rearrangement and suppression of 
tildes) 

1 3 + v ( f ’  t ,  d5’ = ?! ( - + e2p2 127c d&? L T ( C ~  t )  -a(<, ““3, (B 14) 
at 2n -a g- t  at (5‘ - o2 

where a(t) = aP/w .  

the second timescale r = ws2t being quadratic in the small parameter e: 
AS in Appendix A, one next attempts a two-timescale perturbation-series solution, 

I 

where 7 is the mean value of 7 and each of the A,, like A ,  have ‘one-sided’ 
transforms. Equation (B 14) is automatically satisfied a t  lowest order, and A ,  follows 
from equating terms a t  O ( c ) :  

where W , ( ( , T )  is the part of (A,(2 expressible in terms of spectral coefficients with 
positive wavenumbers k ,  and 

& ( t )  = iiw e-&” J dta(t) eh” (B 17) 

conveniently equals a if a is constant. 
At O(e2) ,  the terms in (B 14) that would otherwise lead to secular growth constitute 
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the equation for A,. Only the terms proportional to eiiIut contribute to the equation for 
i3A0/i37, and thus one finds 

I 

where the angled brackets denote ‘the constant part of’ (constant in t ) ,  and 

(B 19) 

Implicit in the definition of the angled brackets is the assumption that the quantities 
a and p, if not precisely periodic, are a t  least periodic on the short timescale t ; either 
quantity may take the following general form : 

in which case the angled brackets are a function of the long timescale r .  This is 
equivalent to requiring that the supporting interface vary no faster than the 
evolution of the disturbance envelope ; otherwise, secular behaviour would not occur 
a t  any order of the perturbation series. 

B.4. An example : the elliptical vortex 

Explicit expressions can be obtained for the strain and the shear when the boundary 
is elliptical, and from these one can calculate the coefficients (b2)  and cr. The unusual 
behaviour of these coefficients described below gives further insight into the weakly 
nonlinear theory. Indeed, resonant situations can arise for certain values of the 
eccentricity that force a more rapid steepening - on the timescale et - and such 
behaviour is not unique to elliptical vortices. 

Fluid particles circuit the boundary of an elliptical vortex according to 
x = cos(6+Qt), y = b sin(O+Qt) (0 < B < 27c) in a frame rotating a t  the rate 
Q = ob / ( l+b) ’  (Lamb 1932). The coefficients /3 and a for a small disturbance 
initially centred on x = cos 6,  y = b sin 0 may be shown to satisfy 

The effect of these quantities on the evolution of a disturbance is nieasurcd by the 
coefficients (b2) and (ad). The evaluation of ( p 2 )  is accomplished easily by complex 
integration, whence 

l + b 2  1 + b2- ( 1  - b 2 )  cos 28 
< P 2 )  = -+P)’> ( P )  = 2b 

On a circular vortex, both (p) and (,P) equal unity. On the ellipse, (p)  equals the 
average aspect ratio (amplitude :extent) of the disturbance during a complete 
journey around the boundary starting and ending at the position B divided by its 
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FIGURE 23. The variation of (r and (p’) versus b. b = 1 corresponds to the circular vortex. (r is 
singular at  an infinite number of values of b accumulating on b = 0. 

initial aspect ratio. Thus, comparing ‘equivalent ’ disturbances on a circular and an 
elliptical boundary (disturbances that have the same average aspect ratio over one 
journey around the vortices), the effect of strain on steepening disturbances, 
measured by the parameter (p2) ,  is greater for elliptical vortices than for circular 
ones, and the effect increases with the eccentricity of the ellipse. 

The curious behaviour stems from the quantity (a&) .  I ts  evaluation is 
accomplished by first expressing a(t)  in the Fourier series 

(B 23) 
1 2n m 

u($) = a,+ C a,  (ein@+e-in@), an = 5 S, a($) cosn$d$, 
n=l 

where $ = 2(19+Qt). Having a series expansion in exponentials, & is easily evaluated, 
and the average assumes the following concise form : 

a: 
m 

4(a&) = 1+8 C ___ 
n--l 1 -n2h2’ 

where h = 4Q/o = 4b/( l  +b)’. (p2)  and u = 4 ( ~ 6 ) / ( , 8 ~ )  are illustrated in figure 23 
(taking (p )  = 1 ) .  cr diverges when the semiminor-axis length b = b, satisfies h(b,) = 
l /m,  m = 2 , 3 , 4 , .  . . . This is because the mth harmonic of the frequency with which 
the strain and shear oscillate, 252, resonates with the linear disturbance frequency, 
&. Resonance signals secular behaviour in the perturbation-expansion solution to 
(B 14) occurring at O(e) rather than at O(e2). Near the mth resonance, if one sets 
mh = 1 + € A ,  € A  < 1, a re-examination of the multiple-timescales analysis reveals 
that  the envelope of a disturbance evolves on the shorter (but still long) timescale 
5 = O€t : 

where a, is computed from (B 23) with b = b, = 2m- l - [ (Zm- 1),- 11;. For 
the first few resonant aspect ratios, b, x 0.17157, a2 x 0.49994; b, x 0.10102, 
as x 0.54427 ; etc. However, at these aspect ratios, the ellipse is linearly unstable 



546 D .  G. Dritschel 

with a maximal growth rate of nearly 0.20 (Love 1893; see also Dritxchel 1986, §5), 
and the major disruption to the large-scale flow resulting from this instability is 
likely to  be more important than the steepening of utterly small disturbances 
before the flow changes significantly (for examples of this disruption, see Dritschel 
1986, 19886). 

The curious behaviour of cr does not stop with the resonant aspect ratios ti,. When 
the aspect ratio is very close to  unity, the parameter cr is nearly five times greater 
than the value for a precisely circular vortex (for the circular vortex, the quantity 
a is exactly one-half while p = 1 so that cr in (B 19) equals 1). In fact, one must alter, 
slightly, the derivation of the envelope equation (B 18) when the diff'erence of the 
aspect ratio from unity is of the order of the disturbance waveslope or smaller. 
Taking b = 1 -2cB with B d 0(1), one finds first that h = 1 -c2B2,  and, in (B 2 3 ) ,  
a, = $, a, = eB, and a,  = 0 ( c n ) .  Thus, a( t )  in (B 14) has the form 

) + @e2), a ( t )  = + + sB(C&ot e - i ~ 2 7  + e-$iwt C i ~ L r  

and now the perturbation-series solution of (B 14) via (B 15) yields (B 18) with 
v = 1, <p2) = 1, and the following additional term on the right-hand side of 
(B 18): a 

a t  (B 26) -B-(w, e-1B27 1 ~ 2  e 1 ~ 2  +z  0 7. 

Taking R+O in b = 1 -2eB, the proper circular vortex limit is recovered. On the 
other hand, when 1 - b is small compared with unity but large compared with the 
disturbance 'waveslope' c, the original equation (B 18) with cr = 5 then applies. 
Essentially, the ellipticity factors into the disturbance evolution only when the 
timescale for the evolution of the disturbance envelope is sufficiently long to 
experience the accumulative effect of the weak resonance provided by the variation 
of strain and shear as the disturbance travels around the boundary. 

Finally, resonance is not unique to the elliptical vortex. Any equilibria, for which 
the particle revolution period is an integer multiple of the linear disturbance period, 
exhibit analogous behaviour. 

Appendix C. Periodic planar contour surgery 
A periodic version of the planar contour surgery algorithm was used for cases 29 

and 30 of table 1 .  The purpose was to simulate effectively infinitesimal disturbances 
to the boundary of a circular vortex patch. A periodic algorithm achieves this by 
assuming that the vortex is disturbed by m identical disturbances around its 
circumference whose widths 6 are much smaller than the separation of adjacent 
disturbances, 27c/m, in the limit of WL tending to infinity. By defining x = -m8 and 
y = m(r-  1) for one angular span, one arrives a t  contour-dynamical equations for 
x-periodic flow (see, e.g. Pullin 1981) with the addition of uniform shear &by to thc 
z-velocity component (cf. (B 10) and (B 1 1 ) ) .  

The equations are solved most simply by using three coordinates constrained to 
the surface of a unit cylinder. Indeed. flow on a cylinder satisfies identical contour- 
dynamical equations. Details of the algorithm will be disclosed in a future 
publication, and here only the initialization and accuracy of the calculations are 
discussed. 

The two calculations using periodic contour surgery were initialized using the same 
forms for the disturbance shape as those given in ( 2 )  a t  the beginning of $ 3  except 
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that the symbols 0 and p are replaced with -x and y ( -z < x d n). Both 
calculations have a = & and m = 20 so that the effects of periodicity can be kept a t  
bay. The accuracy of the two calculations are monitored by the accumutative phase 
error eC, just as in the infinite-planar and spherical calculations, only eC now 
accumulates the errors in the circulation r (using w/Zn in place of the vorticity w ,  as 
before). Such a choice is natural because the basic lengthscale for periodic flow is the 
radius of the cylinder, which is unity here, making r a frequency-like quantity. 
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